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Abstract— Service robots have attracted extensive attention
due to specially designed functions, such as mobile manipulators
or robots with extra structures. For robots that have changing
shapes, autonomous navigation in the real world presents new
challenges. In this paper, we propose a trajectory optimization
method for differential-drive mobile robots with controllable
changing shapes in dense 3D environments. We model the
whole-body trajectory as a polynomial trajectory that satisfies
the nonholonomic dynamics of the base and dynamics of the ex-
tra joints. These constraints are converted into soft constraints,
and an activation function for dense sampling is applied to avoid
nonlinear mutations. In addition, we guarantee the safety of
full shape by limiting the system’s distance from obstacles. To
comprehensively simulate a large extent of height and width
changes, we designed a novel Shape-Changing Robot with a
Differential Base (SCR-DB). Our global trajectory optimization
gives a smooth and collision-free trajectory for SCR-DB at a
low computational cost. We present enormous simulations and
real-world experiments to validate our performance, including
coupled whole-body and independent differential-driven vehicle
motion planning.

I. INTRODUCTION

Service robots are expected to help and assist humans
in various fields. Recently, the application of robots in
factories or households has increased rapidly thanks to the
advanced development of mobile platforms as well as robot
manipulators or specialized functional structures, such as
Stretch [1] and Picker [2]. The functional structures usually
change the shapes of robots while performing tasks. These
changing shapes can cause extra constraints for the navi-
gation of mobile base, especially in tight and cluttered 3D
environments.

Normally, robots are programmed to move in a minimal
setup with the smallest shapes while moving to keep the
safest solution and to reduce the complexity of control.
However, this usually limits the usage and lacks efficiency
in many tasks, such as moving only through absolute safe
pathways after the obstacle inflation. In this paper, we target
to solve the trajectory planning for general robots with
changing shapes in a complex 3D environment, especially
for systems using the differential mobile base, which is most
widely used for service robots. An optimal trajectory for the
systems allows the simultaneous control of the mobile base
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Fig. 1. Simulation experiments in the environment containing bridges
and square obstacles (left). Both the base and the SC-DOF have smooth
trajectories and can achieve obstacle avoidance (right).

and the shape-changing mechanism actuator to move safely
and smoothly.

Taking a Shape-Changing Robot with Differential Base
(SCR-DB), for example, there are two main challenges for its
trajectory planning. Firstly, the safety constraint imposed by
the changing shapes while moving requires the algorithm to
plan all the actuators simultaneously as a whole system. Sep-
arating the mobile base from the Shape-Changing Degree-
Of-Freedom (SC-DOF) and controlling them sequentially
is time inefficiency. Furthermore, taking static inflation for
the robot or environment can be spacial inefficiency and
falsely ignore some possible paths. Secondly, the robot’s
kinodynamic feasibility should be fully considered. As the
maximum angular velocity is coupled with the linear velocity
for differential wheeled control, the driving torque should
be considered for the dynamics to get an easy-to-execute
trajectory. What’s more, when solving the above difficulties,
the computing time should also be short of supporting real-
time deployment, which places additional challenges on the
algorithm.

In this paper, we propose a novel optimization-based real-
time spatial-temporal planning solution to get a smooth
trajectory that satisfies the above requirements. For the ob-
stacle avoidance constraint, a euclidean signed distance field
(ESDF) map is formulated as inequality constraints to ensure
the distance between the robot and obstacles to ensure safety.
We apply the differential flatness property of the mobile base
to represent the robot’s states and dynamical feasibility in a
continuously differentiable model. The kinematic properties
constraints are formulated as inequalities. The SC-DOF is



designed as an optimization variable coupled in the opti-
mization considering the collision between the whole-body
shape and the environment. Then we use the penalty function
to transform the constrained problem into an unconstrained
problem and solve it by the quasi-Newton method. For
constraints with strong nonlinearity, a novel dense sampling
controlled by the activation function is designed to avoid
pathological trajectory.

The main contributions of this paper are:
1. We propose a optimization-based real-time spatial-

temporal planning method considering changing shapes for
SCR-DB in the 3D environment. We formulate a full-state
model based on differential flatness and the joint angle.

2. We transform the optimization model for SCR-DB with
constraints into an unconstrained problem and retain the
differential base’s motion performance.

3. We combine the shape-changing motion with dynam-
ics and 3D environment collision constraints to ensure the
feasibility and safety of the whole system.

4. We validate the effectiveness and robustness of our
method both in simulation and real experiments.

II. RELATED WORK

Motion planning is one of the most active topics in
robotics. Various methods have been proposed for mobile
robots or robot arms, with two main categories sampling-
based [3]–[5] and optimization-based [6], [7]. Although
sampling-based methods are widely used as they are ef-
fective and probabilistically complete, the computation and
trajectory quality limit their performance. Optimization-
based methods can flexibly include various constraints into
a general nonlinear optimization. CHOMP [6] used func-
tional gradient techniques to improve the trajectory quality
interactively. In contrast, STOMP [7] improves the trajectory
through stochastic gradient methods. These algorithms have
been evaluated in high-dimensional robot arms but are still
hard to be online planning.

The scenario relative to our situation is the motion plan-
ning for the mobile manipulator. However, we focus more
on the planning of the mobility instead of end effector tasks
such as pick-and-place [5], [8]–[10]. Namely, the whole body
planning of the system to move in a challenging environment
can happen for mobile manipulator motion in a large and
clustered environment. These planning algorithms [5], [8]–
[10] decouple the planning for the arm and mobile base,
which is less efficient. Recent studies [11], [12] design
optimization-based planners to plan the motion of the ma-
nipulator and the base simultaneously. As their models have
not considered the higher order of dynamics of the system,
trajectory quality for actuators can not be guaranteed.

Although we target high-quality motion planning for SCR-
DB in the 3D dense environment, some studies about
planning for vehicles in 2D cases are worth mentioning.
Works [13], [14] propose path optimization by interpolating
and optimizing key waypoints, but without taking temporal
information into consideration. Rosmann et al. [15], [16]
took time into account and presented ”timed elastic band”

(TEB) based hyper-graph and gave the implementation with
G2o. However, it may take a long time to generate an opti-
mal trajectory. Moreover, trajectory optimization by optimal
control is also a feasible approach. [17] proposed a real-time
minimum-time trajectory planning that considered actuator
limits. Recently, Han et al. [18] parameterized the Ackerman
model with differential flatness to acquire high efficiency to
constrain nonholonomic dynamics.

In summary, our novelty lies in coupled motion plan-
ning for the differential-driven mobile base and controllable
structure using differential flatness output in a dense 3D
environment, considering higher order dynamics. At the
same time, the proposed method is efficient in meeting the
requirements of real-time.

III. MODELING OF THE SCR-DB

This section will introduce our approach to modeling the
SCR-DB and optimization variables.

A. SCR-DB

Fig. 2. Model of our SCR-DB.
To comprehensively simulate a large extent of height and

shape changes, we designed a novel SCR-DB shown in Fig.
2. SCR-DB has a differential drive mobile base, and two front
wheels are driving wheels. A pair of blades are placed on the
base and controlled through coaxial-driven universal joints,
with a tilted rotation axis to achieve large-degree shape
changes. We show three special states in Fig. 3 to illustrate
the collision constraint through corresponding obstacles with
different joint angles. This SCR-DB can simulate a dual-arm
robot by simplifying its arm to a single controllable joint.

We assume that the origin of the base coordinate frame
is the projection point of the center of the driving wheel on
the ground, and the direction of the X-axis is the forward
direction. The robot coordinate frame coincides with it. We
use the left superscript to indicate the coordinate system
where vectors locate in. For example, wp, bp, jp represents
coordinates of p in the world, base and joint coordinate
frames respectively.

Fig. 3. Three special cases of SCR-DB for different obstacles.



B. Differential base

Let the state variables be the state of the center of the
driving wheels: wp = [px, py, ϕ]

T ∈ R3. The base is
controlled by the wheel speed u = [vr, vl]

T ∈ R2, where vr
and vl are the speed of the right wheel and the left wheel.
Thus the kinematics of the base can be expressed as:ṗxṗy

ϕ̇

 =

 cosϕ
2

cosϕ
2

sinϕ
2

sinϕ
2

1
dwb

− 1
dwb

[
vr
vl

]
, (1)

ϕ = arctan 2(ṗy, ṗx), (2)

where dwb is the wheelbase of the driving wheels. Eq.(2)
implies nonholonomic dynamics. We choose the flat output
σ := [σx, σy]

T ∈ R2, where σ is the position of the center
of the driving wheel, i.e. σ = [px, py]

T . Then we can derive
other dynamical states from Eq.(1) as:

v =
√

σ̇2
x + σ̇2

y, (3a)

al = (σ̇xσ̈x + σ̇yσ̈y)/
√

σ̇2
x + σ̇2

y, (3b)

ω = (σ̇xσ̈y − σ̇yσ̈x)/(σ̇
2
x + σ̇2

y), (3c)

α =
σ̇xσ

(3)
y − σ̇yσ

(3)
x

σ̇2
x + σ̇2

y

− 2(σ̇xσ̈y − σ̇yσ̈x)(σ̇xσ̈y + σ̇yσ̈x)

(σ̇2
x + σ̇2

y)2
,

(3d)

where v is base’s velocity, al is the linear acceleration, ω is
the angular velocity, and α is the angular acceleration.

C. Shape-changing mechanism

The conversion between coordinate frames can be
achieved by forward kinematics with the joint angle. There-
fore we use θ ∈ R to represent the joint angle. The rotation
matrix bRj(θ) can be calculated by the rotation axis and θ.
Thus for any point jhm ∈ R3 of the manipulator, we can
find its corresponding coordinate bpm as:

bpm = bRj(θ)
jhm + bpm0, (4)

where bpm0 is the coordinate of the joint in the base
coordinate frame.

In summary, we choose the optimization variables to be
the flat output of the base and the joint angle, i.e.

z = [σT , θ]T ∈ R3. (5)

Therefore, all the control and state variables of the system
can be obtained by z and their derivatives.

IV. SPATIAL-TEMPORAL OPTIMIZATION FOR SCR-DB
In this section, we give a spatial-temporal optimization for-

mulation for trajectory planning and transform the problem
into an unconstrained optimization problem.

A. Optimization problem construction

We divide the trajectory into M segments. Each segment is
expressed as a 3-dimensional polynomial with degree 2s−1.
With the coefficient matrix c = [cT1 , ..., c

T
M ]T ∈ R2Ms×3, the

i-th segment of the trajectory can be expressed as:

zi(t) = cTi β(t), β(t) = [1, t, ..., t2s−1]T ,

∀t ∈[0, Ti],∀i ∈ {1, 2, ...,M}.
(6)

The minimal control effort problem with time regularization
can be expressed as a nonlinear constrained optimization:

min
c(t),T

J0 =

∫ Ts

0

ψ(t)TWψ(t)dt+ ωTTs, (7a)

s.t. ψ(t) = z(s)(t), ∀t ∈ [0, Ts], (7b)

z
[s−1]
1 (0) = z0,z

[s−1]
M (Ts) = zf , (7c)

z
[s−1]
i (Ti) = z

[s−1]
i+1 (0), (7d)

Ts =

M∑
i=1

Ti, Ti > 0, (7e)

Cdb(σ(t), ...,σ
(s)(t)) ≤ 0, ∀db ∈ Db, ∀t ∈ [0, Ts], (7f)

Cdm(z(t), ..., z(s)(t)) ≤ 0,∀dm ∈ Dm, ∀t ∈ [0, Ts], (7g)

where W ∈ R3×3 is a diagonal matrix to penalize control
efforts, ωTTs is the time regularization term. The con-
straints can be imposed on two parts, where Db = {db :
v, v, al, ω, α, s} is the constraint of the differential base
and Dm = {dm : ωm, αm, s} is the constraint of the
joint, both contain kinematic constraints and safety constraint
(represented by s).

Inspired by trajectory class ΣMINCO [19], polynomial
coefficients are uniquely determined by waypoints z′

w =
[z′

1, ...,z
′
M−1] ∈ R3×(M−1) and time of each piece Ti.

Hence we can transform the optimization variables from c
to z′

w and T . The trajectory naturally satisfies the initial and
final states Eq.(7c) and higher order continuity Eq.(7d). In
the subsequent optimization, we choose s = 4 to obtain a
smoother trajectory and allow the joint’s torque to be smooth.

B. Smoothing of inequality constraint functions

Considering the strict positive constraint of time Eq.(7e),
we can change optimization variables from real time Ti ∈
R+ to unconstrained virtual time τi ∈ R with a smooth
bijection [18].

Penalty methods [19] can be used for other inequality
constraints Eq.(7f) and Eq.(7g) with a first-order smooth
penalty function L1(x). Since we cannot directly solve the
integral of the penalty function in a closed form, we can
approximate it by discretizing the constraint function and
calculating its sum:

Cd(ci, Ti, t̂) = Cd(cTi β(Ti · t̂), ..., cTi β(s)(Ti · t̂)), (8)

Id(c,T ) =

M∑
i=0

κ∑
j=0

Ti

κ
ϵjL1(Cd(ci, Ti,

j

κ
)), (9)

where t̂ is the normalized timestamp, κ ∈ Z+ is the number
of samples, (ϵ0, ϵ1, ..., ϵκ−1, ϵκ) = (1/2, 1, ...., 1, 1/2) are
the coefficients from the trapezoidal rule [20].

C. Dense sampling for nonlinear constraints

When modeling, we find that both angular velocity ω
and angular acceleration α of the base are related to the
reciprocal of velocity from Eq.(3c) and Eq.(3d), which leads
to strongly nonlinear when the velocity is relatively small as
shown in Fig. 4. It is inappropriate to sample it with the same
density as other constraints, for its nonlinearity could lead to



mutations in an unsampled interval. Though denser sampling
can constrain it better, it is also inappropriate to densely
sample the entire trajectory, which will cause unnecessary
computation. Therefore, we use a smooth activation function
La(x) to activate intervals of greater sampling density:

La(x) =


0 x < −ϵa
1

2ϵ4a
(x+ ϵa)

3(ϵa − x) −ϵa < x ≤ 0
1

2ϵ4a
(x− ϵa)

3(ϵa + x) + 1 0 < x ≤ ϵa

1 ϵa < x

,

(10)

where ϵa ∈ R+. We set a velocity vla and set the activation
value as the quadratic difference between the current velocity
and vla, i.e., La(v

2
la − v2), so that the expression of dense

sampling is:

Ia(c,T ) =

K∑
i=1

κ∑
j=0

La(v
2
la − v2i,j)F (ci, Ti, j),

F (ci, Ti, j) =

κ′∑
k=0

Ti

κκ′ ϵ
′
kL1(Ca,i,j,k).

(11)

(ϵ′0, ϵ1, . . . , ϵ
′
κ′−1, ϵ

′
κ′) = (1/2, 1, ...., 1, 1/2) has the same

meaning as ϵ, κ′ ∈ Z+ is the number of dense sampling,
vi,j = ||σ̇i(

j
κTi)||2 is the velocity got from sparse sampling,

Ca,i,j,k = Ca(ci, Ti,
j−1/2

κ + k
κκ′ ) has the same definition as

Eq.(8). In particular, when j = 0 or κ, only κ′/2 + 1 times
are sampled backward or forward. If vi,j is smaller than vla,
dense sampling is performed, by which the sampling density
in the interval is increased to κκ′. Otherwise, we can directly
skip the subsequent dense sampling. Thus, we can densely
sample only where nonlinear mutations are likely to occur,
which balances the accuracy and efficiency.

Fig. 4. Optimization of different sampling methods. Although α of
sampling points is within the range, it may mutate (upper right) in sampling
intervals. However, dense sampling can better limit α (lower left). Dense
sampling is activated only for part of the time, and is not computed in larger
speed intervals to save computing time.

As mentioned above, we can re-represent the optimization
problem as an unconstrained problem by Eq.(9)(11):

min
z′
w,τ

J = J0(c(z
′
w, τ ),T (τ )) + IΣ(c(z

′
w, τ ),T (τ )),

IΣ = ωdId(c(z
′
w, τ ),T (τ )) + ωaIa(c(z

′
w, τ ),T (τ )),

(12)

where ωd, ωa are weights of each constraint of the sparse
and dense sampling. We sample base’s constraints Db =

{db : v, al, ω, α, s} and joint’s constraints Dm = {dm :
ωm, αm, s} sparsely. While minimum velocity, angular ve-
locity and angular acceleration of the base Abase = {abase :
v, ω, α} are densely sampled additionally.

So far, we have transformed the problem into an uncon-
strained optimization problem as Eq.(12). If we have the
expression of inequality constraints, we can use the chain
rule to get the gradient and solve the problem by L-BFGS
algorithm [21].

V. DYNAMIC FEASIBILITY AND SAFETY CONSTRAINTS

In this section, we focus on the specific forms of inequality
constraints.

A. Linear velocity and angular velocity of the base

From Eq.(1) we can find the maximum angular velocity
ωmax and velocity v are linear correlations in kinematics
because of the limited maximum wheel speeds. However, the
torque required for rotation is different from linear motion
usually. We simplified this by still assuming that ωmax is
linearly related to v but scaled with a factor η ∈ R+:
ωmax(v) = 2η(vmax − v)/dwb, where vmax is the maximum
speed of the base and also the driving wheels. Then we can
give constraint functions of v and ω:

Cv(σ̇) = σ̇T σ̇ − v2max, (13)

Cωr
(σ̇, σ̈) =

σ̈TBσ̇

||σ̇||22
− ωmax(||σ̇||2),

Cωl
(σ̇, σ̈) = − σ̈TBσ̇

||σ̇||22
− ωmax(||σ̇||2),

(14)

where B =

[
0 −1
1 0

]
is a constant matrix, and ||·|| is 2-norm

of vectors. We use constraints on both ends of ω to reduce
the nonlinearity from adversely affecting the optimization.

B. Linear acceleration and angular acceleration of the base
Considering the torque limitation of the wheels, we also

set constraints of linear acceleration al and angular acceler-
ation α for the differential base:

Cal(σ̇, σ̈) =
(σ̈T σ̇)2

||σ̇||22
− a2

l,max, (15)

Cαr (σ̇, σ̈,σ
(3)) =

σ(3)TBσ̇

||σ̇||22
− 2σ̈TBσ̇σ̈T σ̇

||σ̇||42
− αmax,

Cαl(σ̇, σ̈,σ
(3)) = −σ

(3)TBσ̇

||σ̇||22
+

2σ̈TBσ̇σ̈T σ̇

||σ̇||42
− αmax,

(16)

where al,max, αmax are the maximum linear acceleration and
the maximum angular acceleration.

C. Minimum velocity of the base

Since both ω and α take velocity’s higher orders as the
denominator and have no limit when v approaches 0, which
means that there will be a singularity when v is equal to zero,
as in Eq.(3c) and Eq.(3d). To avoid the singularity, we set a
minimum velocity vmin. If the velocity vd is less than vmin

at a given initial or final state, we will set the velocity to v′d =
[vmin cos θd, vmin sin θd]

T , where θd = arctan 2(vdy, vdx).



Fig. 5. Trajectory optimization in dense environments. The proposed
method allows rotations with a very small radius, the minimum radius of
the trajectory in the figure is 9.3 mm, which can be equivalent to spinning
in place.

In the subsequent application, we choose vmin = 10−2m/s,
whose corresponding minimum rotation radius is only several
millimeters, as shown in Fig. 5, which can be approximated
as spin in place. We also give the minimum speed constraint
in the optimization:

Cv(σ̇) = v2min − σ̇T σ̇. (17)

Therefore we avoid the singularity of the flat output while
preserving the motion performance.

D. Velocity and angular acceleration of the joint

Considering the limitation of joint’s torque, it is necessary
to constrain its velocity and acceleration:

Cωm
(θ̇) = θ̇2 − ω2

m,max, (18)

Cαm
(θ̈) = θ̈2 − α2

m,max, (19)

where ω2
m,max, α

2
m,max is the maximum velocity and the

maximum acceleration of the joint.

E. Safety

Considering the shape of our system, we should consider
the safety of the whole body instead of reducing it to a point.
Therefore we use ESDF to obtain the signed distance of any
point relative to obstacles. After obtaining the gridmap, we
can get ESDF by computing an efficient O(n) algorithm
[22], where n is the number of updated grids. Because of
the errors of ESDF introduced by the discretization of the
voxel grid map, trilinear interpolation is used to improve the
accuracy of the distance and gradient information [23]. We
can ensure safety by constraining ESDF values of the whole
system greater than the safety distance ds.

We take γb points bhb,l ∈ R3 along base’s contour. Then
their corresponding positions wpb,l can be calculated as:

wpb,l =

[
σ
0

]
+ wRb

bhb,l,
wRb =

 [σ̇,Bσ̇]

||σ̇||2
0

0T 1

 , (20)

where wRb is the rotation matrix of the base. Then the safety
constraint of the base can be expressed as:

Cs,b,l(σ, σ̇) = ds − E(wpb,l), (21)

where E(·) is the ESDF value obtained by trilinear interpo-
lation. Similarly, we can get the position of each point on
the manipulator with Eq.(4). We choose γm points jhm,l ∈

R3, l ∈ {1, 2, . . . , γm} along manipulator’s contour. Then
their corresponding positions wpm,l can be calculated as:

bT j =

[
bRj

bpm0

0T 1

]
, wT b =

[
wRb

[
σT 0

]T
0T 1

]
,

jhm,l = [jhT
m,l, 1]

T , [wpT
m,l, 1]

T = wT b
bT j

jhm,j ,

(22)

Therefore we can get the safety constraint of the joint as:

Cs,m,l(σ, σ̇, θ) = ds − E(wpm,l). (23)

Until now, we give all constraints of SCR-DB.

VI. EXPERIMENT

Three sets of experiments were conducted to validate our
proposed system. Firstly, we test in complex 3D simulated
environments and show the optimized smooth trajectories rel-
ative to the initial path. Then, we compare our method with
other vehicle planning solutions to verify the effectiveness
of our method for the differential base. Lastly, we verify our
method in the real-world setup to prove our system. We use
the hybridA* [24] to give the initial path.

A. Planning for the shape-changing robot

This section aims to verify that our proposed method
can work well in the simulation environment. We test our
algorithm in two scenarios with obstacles, including cubes
and arch bridges. All simulation experiments are conducted
on a desktop computer running Ubuntu 18.04 with an Intel
Core i7-10700K CPU.

In the first scene, there are two kinds of arch bridges, and
we give the initial path to pass through arch bridges to test
in the specific 3D environment as shown in Fig. 6.

Fig. 6. The robot crosses arch bridge obstacles of different shapes, the
green is the trajectory of the proposed method. The curve is the change of
the joint angle relative to time.

In the second scene, we randomly choose the start and
end states in the environment of size 10m× 10m× 1m like
fig. 1 for 500 experiments. We build ESDF in advance with
a time of 170ms. Average line acceleration (Ma), average
angular acceleration (Mα), and average jerk (Mj) are used
to measure the smoothness of the trajectory [18]. Average
joint jerk (Mmj) is used to measure the joint’s smoothness
for jerk minimization, which is able to reduce tracking error
and realize small actuator stresses. The trajectory length
of the base (length) and trajectory time (time) are for
measuring trajectory quality. The data are shown in Tab.I.
The success rate is 93.0% with an average computation time
(CT ) of 104.2ms.



TABLE I. Comparison before and after optimization

Mj
(m/s3)

Ma
(m/s2)

Mα
(rad/s2)

length
(m)

time
(s)

Mmj
(rad/s3)

initial 0.614 0.428 2.683 8.870 9.516 2.000
optimized 0.193 0.370 0.724 8.508 10.196 0.294

B. Planning for the differential base

This section aims to verify our proposed real-time plan-
ning for the differential base. The size of scenarios is set to
10m × 10m × 0.4m, the size of the differential vehicle is
40cm × 40cm × 30cm, and the obstacles are all rectangles
of 60cm×60cm×40cm. We randomly select feasible initial
and final points and build ESDF in advance with time spent
71.2ms.

To verify the effect of dense sampling, we experiment
200 times in the above scenarios with 20 obstacles. Then
we count the number of conditions that the maximum α
of the trajectory exceeds constraint with different thresholds
(TH) and the proportion of time when α exceeds the
constraint (PT ). The result is shown in Tab.II. It can be
found that dense sampling can reduce the level of violation,
and appropriately dense sampling can speed up convergence.

TABLE II. Comparison with and without Dense Sampling (DS)

TH
< 10%

TH
< 25%

TH
> 25%

PT
%

CT
(ms)

without DS 10 72 128 4.36 131.8
with DS 152 165 35 2.24 64.8

What’s more, we design 3 scenarios with different obstacle
densities. We choose Timed Elastic Bands (TEB) [16] for
comparison. We perform 200 tests with randomly given
starting and ending states with distances greater than 5m.
The data are shown in Tab.III.

TABLE III. Comparison in different cases for differential-driven base

Env Method
Mj

(m/s3)
Mα

(rad/s2)
CT
(s)

length
(m)

time
(s)

sparse
(10boxes)

Proposed 0.554 0.503 0.051 7.822 9.355
TEB 7.794 1.684 6.287 7.945 5.184

dense
(20boxes)

Proposed 0.550 0.548 0.053 7.720 9.585
TEB 5.899 1.753 7.578 7.794 5.412

denser
(35boxes)

Proposed 0.574 0.598 0.058 7.656 10.332
TEB 6.987 1.845 20.208 7.778 5.855

The results show that our planner takes less planning time
and produces smaller jerk, linear and angular accelerations,
which makes trajectories smoother and easier to be tracked.
In addition, the proposed method takes the limitation of
torque into account instead of simply giving the maximum
v and ω. The trajectory can better satisfy the dynamics
constraints of the differential vehicle and be better executed.
The results of different methods are shown in Fig. 7.

C. Real-World Experiments

We also test in a real environment to verify that our
proposed method can work on real robots. The experiment
site is a dense 5m × 6m space with square obstacles and
tapes for height limitation. The experiment uses the above-
mentioned designed SCR-DB in Fig. 2, which is developed

Fig. 7. Visual comparison of different methods. Since our algorithm runs
in 3D space, but most of the planning runs in 2D space, the edges of the
obstacles are set parallel or perpendicular to the horizontal plane to avoid
the effect of extra dimension. Grips [13] is a path optimization method. It
can be seen that the trajectory of the proposed method is smoother.

based on a differential-drive agilex TRACER MINI1 platform
with a maximum speed of 0.5m/s, a scaling factor η = 0.1,
and a pair of controllable blades. The processing unit of
the robot is Intel NUC11TNHi7. We use the motion capture
system for positioning and map the environment in advance.
The robot’s movement is shown in Fig. 8, which shows
that the robot can avoid obstacles following the planned
trajectory.

Fig. 8. Real-world experiment.

VII. CONCLUSION

In this paper, we propose a trajectory optimization method
for shape-changing robots with differential-driven base. By
modeling the optimization problem, we complete the plan-
ning of the proposed SCR-DB in a 3D environment and
preserve the motion ability of each part as much as possible.
In simulation and real experiments, we test the effectiveness
and robustness of our method. Moreover, our algorithm can
be applied to robots consisting of a differential base and
additional DOFs. In the future, we will try our method on
more robots, such as mobile manipulators.

1https://www.agilex.ai/product/16



REFERENCES

[1] “Hello robot: Simply useful robots,” https://hello-robot.com/, [Ac-
cessed 12-Sep-2022].

[2] “Picker Robot: inVia Robotics,” https://inviarobotics.com/, [Accessed
12-Sep-2022].

[3] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

[4] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp.
995–1001 vol.2.

[5] F. Burget, M. Bennewitz, and W. Burgard, “Bi 2 rrt: An efficient
sampling-based path planning framework for task-constrained mobile
manipulation,” in 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2016, pp. 3714–3721.

[6] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 489–494.

[7] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 4569–4574.

[8] J. Xu, K. Harada, W. Wan, T. Ueshiba, and Y. Domae, “Planning an
efficient and robust base sequence for a mobile manipulator performing
multiple pick-and-place tasks,” CoRR, vol. abs/2001.08042, 2020.
[Online]. Available: https://arxiv.org/abs/2001.08042

[9] S. Thakar, L. Fang, B. Shah, and S. Gupta, “Towards time-optimal
trajectory planning for pick-and-transport operation with a mobile ma-
nipulator,” in 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE). IEEE, 2018, pp. 981–987.

[10] S. Thakar, P. Rajendran, A. M. Kabir, and S. K. Gupta, “Manipulator
motion planning for part pickup and transport operations from a mov-
ing base,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 1, pp. 191–206, 2022.

[11] M. Spahn, B. Brito, and J. Alonso-Mora, “Coupled mobile manip-
ulation via trajectory optimization with free space decomposition,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 12 759–12 765.

[12] J. Xu, Y. Domae, W. Wan, and K. Harada, “An optimization-based
motion planner for a mobile manipulator to perform tasks during
the motion,” in 2022 IEEE/SICE International Symposium on System
Integration (SII), 2022, pp. 519–524.

[13] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme,
“Gradient-informed path smoothing for wheeled mobile robots,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 1710–1717.

[14] Z. Jian, S. Zhang, J. Zhang, S. Chen, and N. Zheng, “Parametric path
optimization for wheeled robots navigation,” in 2022 International
Conference on Robotics and Automation (ICRA), 2022, pp. 10 883–
10 889.
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