
Efficient Trajectory Generation Based on Traversable Planes
in 3D Complex Architectural Spaces

Mengke Zhang1,2,†, Zhihao Tian2,†, Yaoguang Xia3, Chao Xu1,2, Fei Gao1,2, Yanjun Cao1,2

Abstract— With the increasing integration of robots into hu-
man life, their role in architectural spaces where people spend
most of their time has become more prominent. While motion
capabilities and accurate localization for automated robots
have rapidly developed, the challenge remains to generate
efficient, smooth, comprehensive, and high-quality trajectories
in these areas. In this paper, we propose a novel efficient
planner for ground robots to autonomously navigate in large
complex multi-layered architectural spaces. Considering that
traversable regions typically include ground, slopes, and stairs,
which are planar or nearly planar structures, we simplify the
problem to navigation within and between complex intersecting
planes. We first extract traversable planes from 3D point clouds
through segmenting, merging, classifying, and connecting to
build a plane-graph, which is lightweight but fully represents
the traversable regions. We then build a trajectory optimization
based on motion state trajectory and fully consider special
constraints when crossing multi-layer planes to maximize the
robot’s maneuverability. We conduct experiments in simulated
environments and test on a CubeTrack robot in real-world
scenarios, validating the method’s effectiveness and practicality.

I. INTRODUCTION

Robots are desired to assist with various aspects of human
life, particularly in architectural spaces where people spend
the majority of their time, such as houses, factories, offices,
shopping malls, and complex buildings. Recently, advance-
ments in motion control for tracked robots have significantly
improved their ability to navigate obstacles like stairs and
slopes. Additionally, the development of visual and LiDAR-
based SLAM technology offers stable and accurate localiza-
tion information. To apply these robots as fully autonomous
systems in large 3D complex multi-layered architectural
spaces, how to generate efficient, smooth, comprehensive,
and high-quality trajectories connecting any two positions in
the space remains unresolved.

Several methods have proposed planning techniques for
ground robots in 3D spaces, but primarily focused on single-
layer settings. A common approach is to directly plan
on point clouds or meshes; however, these methods often
consume excessive memory and have limitations in accu-
rately representing ground features. Given that ground robots

∗This work was supported by National Natural Science Foundation of
China under Grant 62103368.

1The State Key Laboratory of Industrial Control Technology, College of
Control Science and Engineering, Zhejiang University, Hangzhou 310027,
China.

2Huzhou Institute, Zhejiang University, and Huzhou Key Laboratory of
Autonomous System, Huzhou 313000, China.

3China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310024, China.
† Equal contribution.
Email:{mkzhang233, yanjunhi}@zju.edu.cn

zhihaotian37@gmail.com

Fig. 1. The proposed trajectory generation enables the robot to navigate
in a complex environment, passing through high platforms via stairs and
slopes to avoid an obstacle wall and finally arrive at the target in the map.

are restricted to ground movement, generating trajectories
directly on point clouds or meshes with optimal postures
is difficult. Elevation maps can efficiently represent terrain
information and are used to generate the trajectories well.
However, it only works in single-layer environments, such
as roads or single floors. To adapt the approach for multi-
layer environments, additional rule-based layering strategies
are necessary.

We target an efficient planner for ground robots to gen-
erate a smooth, unified, continuous trajectory in multi-
layered spaces without breaking down the process in one
task. Considering that traversable regions typically include
roads, floors, slopes, and stairs, which are planar or nearly
planar structures, we simplified the problem to navigation
within and between complex intersecting planes. We first
extract traversable planes from 3D point clouds through
segmenting, merging, classifying, and connecting to build
a plane graph, which is lightweight but fully represents the
traversable regions. This allows us to transform the trajec-
tory generation from the 3D spaces to intersecting planes,
effectively reducing the complexity and accelerating the path
search process. We introduce a trajectory representation that
represents trajectories as positional increments within plane
coordinate systems, which is used for trajectory optimization
within multiple planes. In addition, we fully consider special
constraints when crossing multi-layer planes to maximize the
robot’s maneuverability and ensure safe operation on risky
structures. In summary, our contributions are as follows:

1. We propose an efficient trajectory generation planner
specifically for 3D complex architectural spaces, which lever-
ages traversable planes of simplify the problem to navigation



within and between planes.
2. We design an approach to extract a traversable plane

graph from point clouds, simplifying the representation of
feasible regions in 3D spaces.

3. We propose a plane graph path search approach and an
optimization-based trajectory generation method, efficiently
generating safe and kinematically appropriate trajectories.

4. We validate our method on various complex simulation
maps and verified its practicality in the real environment.

The rest of the paper is organized as follows. In Sec.II,
we review related work. In Sec.III, we introduce the process
of extracting traversable planes and the construction of plane
graph. In Sec.IV, we introduce the proposed trajectory gen-
eration, including path searching and trajectory optimization.
Sec.V and Sec.VI present the experiments and conclusions.

II. RELATED WORK

In recent years, planning methods for ground robots in 3D
environments have been extensively studied.

The global point clouds are easily obtained in most archi-
tectural 3D spaces. Tensor voting [1], [2] is used to estimate
the robot’s pose. Chen [3] determine the robot’s possible
poses from point clouds, which are used for planning and
control. Although planning directly on the point cloud can
yield accurate attitude information, it is time-consuming.
These methods find it challenging to generate continuous
trajectories within a limited time frame.

Traversable planes are widely used for the planning of
ground robots. Jian [4] fit planes on point clouds and generate
a traversable strip for guiding trajectory generation. Learning
based approaches [5], [6] are used to predict traversable areas
and robot poses. However, these methods simply consider
the single-layer 3D environment with different elevations,
instead of architectural spaces with multiple layers. Road
segmentation [7]–[9] is also widely used, but is also difficult
to extend to multi-layer 3D complex architectural spaces.

Several methods [10]–[13] can generate smooth and high-
quality trajectories for ground robots. However they assume
horizontal planes in the optimization, making them unsuit-
able for 3D environments with slopes. Distance fields [11],
[13] are used to ensure the robot’s safety by maintaining a
minimum distance from obstacles. Based on the concept of
fields, some methods [14]–[17] discretize the environment
and estimate the pose to construct fields for trajectory gen-
eration. Yang [18] use tomographic analysis to divide 3D
structures into multiple layers, reducing the map size and
accelerating path search. However, these methods usually
lose structured information because of the discretization.
The motion constraints for robots on specific planes may
differ from those on a horizontal plane, which may result in
generating risky trajectories.

Indoor reconstruction techniques can effectively extract
traversable planes in architectural spaces. Industry Founda-
tion Classes models (IFC) [19] and Feature Structure Map
(FSM) [20] are used to reconstruct 3D free spaces for
navigation. Jelena [21] construct a hierarchical graph based
on known planes for path planning. However, these methods

are limited to extracting floor planes and overly simplify
the modeling of stairs. To determine the navigation between
layers, stair detection [22]–[25] is proposed to calculate the
position of stairs and is used to find the optimal routes in
complex buildings [26].

III. TRAVERSABLE PLANE GRAPH CONSTRUCTION

In this section, we introduce extracting traversable planes
from point clouds. As shown in Alg. 1, we take global
point clouds as input and output traversable planes and their
parameters, including the transformation matrix Tp from the
world coordinate ststem Ψw to the plane coordinate system
Ψp, the Euclidean Signed Distance Field (ESDF), the indices
and connecting lines of adjacent planes. In the following text,
we use ∗p to indicate the coordinate system Ψ∗ to which the
point belongs.

Algorithm 1 Extract Traversable Planes
Input: global point clouds: cloud
Output: traversable planes:
PLt = {(Tp, ESDF, index, line)}

1: normalmap← PreAnalyse(cloud)
2: PL← RegionGrowing(cloud, normalmap)
3: PLt, PLv ← Merge(PL)
4: for each Pi ∈ PLt do
5: Pi.boundary ← CalConvex(Pi)
6: for each Pi, Pj ∈ PLt do
7: if Adjacent(Pi, Pj) then
8: Pi.line, Pj .line← CalConnect(Pi, Pj)
9: Pi.index← j, Pj .index← i

10: for Pi ∈ PLt do
11: Ts ← SetGridmap(Pi)
12: for j ∈ Pi.index do
13: SetOverlap(Pi, PLt[j])
14: SetOccupied(Pi, PLv)
15: Pi.ESDF ← UpdateESDF(Pi)

Plane Extraction and Merging (line 1 to 3): We first
downsample and filter the input point clouds, and then
estimate normals to get the normal map (Fig.2(a)). With

Fig. 2. The process of extracting traversable planes. (a) Original
point clouds. (b) Planes extracted using the region-growing. (c) Merged
traversable planes. (d) Connectivity between traversable planes, where white
lines are intersection lines. (e) Gridding. (f) ESDF.



Fig. 3. Grid states. Considering the expanded boundaries, the grid map is
larger than the plane itself. The top left corner shows the model.

the region-growing [22], we extract planes PL from the
point clouds and the normal map (Fig.2(b)). Inspired by
[22], we merge the planes belonging to stairs. The planes
are classified into traversable planes PLt and vertical planes
PLv with the inclination calculated by covariance matrixes.
We merge coplanar and adjacent PLt to get the complete
plane structure. If two parallel planes of the same size
are close, we remove the lower plane considering thickness
(Fig.2(c)).

Determining Plane Connectivity (line 4 to 9): We project
points of each PLt onto the plane and calculate a minimal
convex polygon containing these points. Because of possible
misclassification of points near the boundary, we slightly
expand the boundary points of the polygon outward. If an
intersection li,j of the two polygon is found, we save the
two endpoints wli,j1 ,wli,j2 and the indices of the intersecting
planes (Fig.2(d)).

Gridding(line 10 to 15): We use the centroid of the point
clouds ci ∈ R3 as the origin of Ψi, the plane’s ascent
direction as the x-axis and the direction perpendicular to
the plane as the z-axis, by which we can get the rotation
matrix Ri ∈ R3×3 and translation vector ci ∈ R3 of the
transformation matrix Ti. The grid map is initialized as
Unknown. The grid will be set as Safe if there is at last
one projection point in it. The grid corresponding to the
intersection lines between planes are marked as Interline,
while overlapping non-traversable regions are marked as
Overlap. The Overlap grids adjacent to Safe grids are
defined as Boundary. Considering that vertical planes PLv

may be above PLt as obstacles, we use alpha shapes [27]
to find the boundary points of PLv . If the distance from
the boundary points to PLt is less than the safety distance,
the corresponding grid will be set as Occupied (Fig.2(e)).
Examples of grid states are shown in Fig.3. Finally, we
update ESDF by considering Unknown, Occupied, and
Boundary grids as obstacles (Fig.2(f)).

So far, we represent the feasible regions of the 3D envi-
ronment as traversable planes, which preserve the feasible
regions as simple a structure as possible and as little data as
possible.

We use an undirected cost graph G = (V,E,W ) to
describe these planes. We define the vertex set V as points on
the intersection lines li,j . Initially, these points are assumed
to be at the midpoint of li,j . We use ESDF to check if the

point is feasible in both adjacent planes; if it is not feasible,
we check points on either side until the first feasible point is
found. After getting all V , we traverse all the planes and use
A* to determine if a path exists connecting the two vertices
within the plane, and record the path as an edge E, the cost
is corresponding weight W .

IV. TRAJECTORY GENERATION

In this section, we introduce how to use plane graph
for path searching and generate cross-plane trajectories that
satisfy constraints through optimization.

A. Path Searching
After getting the starting position wp0, we first project the

point onto the nearest plane P1 and use its projection point
1p0 as the start node. We search for paths from 1p0 to all
vertices on P1. The feasible paths and their costs are added
to G. The final position wpf is similarly processed as the
final node. With breadth-first search within G, we connect
edges to find the path from the start node to the final node.

B. Trajectory representation
As differential drive robots exhibit superior maneuverabil-

ity in narrow environments, we use the MS trajectory [13],
which is suitable for these robots. Intuitively, trajectories on
a plane represent the incremental position starting from the
start position on the plane. The MS trajectory is a polynomial
function of the yaw angle wθ in Ψw and forward arc length
s relative to time. The mi-th segment of the trajectory can
be represented as:

wθmi(t) = βT (t)cθ,mi, (1)

smi(t) = βT (t)cs,mi, (2)

where cmi = [cθ,mi, cs,mi] is the coefficients of the poly-
nomial, and β(t) is the natural basis. For simplicity, we use
σ = [wθ, s]T . The high-order continuity of the MS trajectory
is inherently satisfied, and a smooth bijection is used for the
non-negativity constraints of trajectory duration.

To represent the trajectory across multiple planes, we
partition the whole trajectory into T parts, with the ti-
th part representing the trajectory on the ti-th plane. Each
trajectory part consists of Mti polynomial segments, so the
entire trajectory comprises M =

∑T
ti=1Mti segments. Each

polynomial segment is confined to a single plane. Unlike
[13], due to each plane having its own coordinate system,
the trajectory must be located on the plane. Therefore, the
trajectory should be transformed into the local coordinate
system for planning.

Within the ti-th plane, the trajectory should start from the
point wpti

0 on the intersection line or starting point wp0, with
its projection on the plane given by tip0 = {tix0, tiy0}. For
simplicity, wp0 and wp1

0 are equivalent next. The trajectory
in Ψti can be expressed as:

tix(t) =

∫ t

0

[ṡti(τ) cos(
wθti(τ)−∆θti)]dτ +

tix0, (3)

tiy(t) =

∫ t

0

[ṡti(τ) sin(
wθti(τ)−∆θti)]dτ +

tiy0, (4)



where ∆θti is the yaw angle offset of Ψti relative to Ψw. We
use Simpson’s rule to approximate {tix(t), tiy(t)}, allowing
the robot’s state in Ψti to be calculated at any time.

C. Trajectory Optimization

Based on the trajectory representation proposed in Sec.IV-
B, we set the objective function J as:

min
c,T

J =

∫ Ts

0

σ(3)(t)TWσ(3)(t)dt+ ϵTTs + wdCd, (5)

where W ∈ R2×2 is a diagonal matrix to penalize control
efforts, Ts =

∑M
mi=1 Tmi is the trajectory duration and

ϵT is the weight. The objective is to minimize the jerk of
σ to reduce control effort while introducing a time term
to balance the trajectory duration. We employ the penalty
function method, where we ensure Cd(σ(t), . . . , σ̈(t)) ≤ 0
by including constraint d into the optimization function, with
wd representing the corresponding weight.

In cross-plane planning, the trajectory starts from wpti
0 and

ends at the global final position or point on the intersection
line wpti

f , where wpti+1
0 = wpti

f . Considering that wpti
f

on the intersection line is got from searching rather than
optimization. To ensure the trajectory’s optimality, wpti

f

should be parts of the optimization variables. Assuming the
endpoints of the intersection line are wlti0 ,

wlti1 , we introduce
a parameter ηti as:

wpti
f = wlti0 + η∗ti(

wlti1 − wlti0 ), η
∗
ti ∈ (0, 1),

η∗ti =
1

1 + e−ηti
, ηti ∈ R, ti ∈ {1, . . . , T − 1},

(6)

where η∗ti is the proportion of the position from wlti0 to wlti1 .
Since η∗ti ∈ (0, 1), we introduce an unconstrained variable
ηti as the optimization variable to simplify the problem.

As the MS trajectory requires integration to compute
positions, we introduce ALM [28] to ensure that trajectories
on the plane reach the given final position. Suppose the
final position calculated by integration in the ti-th plane is
tip̃ti

f = [tix̃tif ,
tiỹtif ]

T . The desired final position is tipti
f =

[tixtif ,
tiytif ]

T for ti ∈ {1, . . . , T − 1}. In the last plane, the
desired final position is the global final position, T pT

f . In the
following, we collectively refer to tipti

f for ti ∈ {1, . . . , T }.
For the x-axis of the ti-th plane as an example, the final
position constraint can be expressed as:

Cti
fx(c,T ) = tix̃tif (c,T )− tixtif . (7)

Thus, the new optimization problem can be formulated as:

Jρ(c,T ,η,λ) = J +

T∑
ti=1
ι=x,y

ρ

2

∥∥∥∥Cti
fι(c,T ) +

λtiι
ρ

∥∥∥∥2 , (8)

where λ = {λtiι } are dual variables and ρ > 0 is the weight
of the augmentation term. We can solve the optimization
problem Eq.(8) and update λ to iteratively get the solution.
For gradient propagation and solutions to the optimization
problem, readers can refer to [13]. We set the convergence

condition such that the error between tip̃ti
f and tipti

f is less
than the given value emax:√

(tix̃tif − tixtif )
2 + (tiỹtif − tiytif )

2 < emax. (9)

In practice, we generally set emax = 1cm, ensuring that final
position errors have minimal impact on subsequent control.

D. Constraints
In this section, we focus on the specific form of inequality

constraints for navigation crossing multiple layers.
Velocity Constraint: Considering the impact of gravity,

the robot’s velocity on slopes varies with orientation. To
describe this variation, we represent the maximum velocity
on the slope as a function of the robot’s yaw angle pθ in the
plane coordinate system Ψp. For instance, when the robot is
moving forward:

vmax(
pθ) = (10)vmax

√
rr(ψ) cos2 pθ + sin2 pθ, pθ ∈ [−π/2, π/2],

vmax

√
rd(ψ) cos2 pθ + sin2 pθ, otherwise,

where vmax is the maximum forward velocity on the hori-
zontal ground, and ψ is the inclination angle of the slope.
rr(ψ), rd(ψ) are the ratio function when rising and declining
along the plane, which is related to the specific robot.
Eq.(10) is used to approximate the maximum velocity with
two half-ellipses, ensuring that vmax(

pθ) is continuous and
differentiable with respect to pθ.

Similar to [13], considering that differential drive robots
require differential wheel speeds to achieve rotation, the
maximum angular velocity should depend on the current
velocity. We can give the corresponding constraint as:

Cm+(σ, σ̇) = κωvmax(
pθ) + ωMv − vmax(

pθ)ωM , (11)

where κ ∈ {−1, 1}, ωM is the maximum angular velocity
when rotating in place, σ̇ = [ω, v] is angular velocity and
linear velocity. The constraint Cm− when the robot moves
backward can also be obtained from Eq.(11).

Orientation Constraint: When the robot is moving on
stairs, the contact points are significantly fewer than those
on a plane. If the orientation pθ deviates too much from the
upward direction of the stairs, it could result in side-slipping
or even tipping over. To ensure safety, we need to constrain
the angle between them:

CO(σ) = pθ′2 − θs
2, pθ = pθ′ + kπ, pθ′ ∈ [−π

2
,
π

2
), (12)

where k is an integer, and θs is the desired maximum angle.
Due to the upward direction of the stairs is the x-axis of Ψp,
Eq.(12) constrains the yaw angle in Ψp to close to 0 or π.

Safety Constraint: We use the ESDF from Sec.III to
ensure safety. The constraint requires that the ESDF value of
the current position {px, py} in Ψp is greater than a safety
distance ds:

Cs(px, py) = ds − Ep(
px, py), (13)

where Ep(
px, py) is the ESDF value obtained through bilin-

ear interpolation in plane p.



Fig. 4. Simulation environment and trajectory generation of the proposed method. The first row shows the point clouds of the environment: Planes(a1),
Platform(b1), Multi-layer(c1), and Building(d1). The second row shows traversable planes, where white lines are intersection lines between planes, red
lines are the plane graph, and green lines are the searched path. The third row shows ESDF and the generated trajectory. The table shows the trajectory
length L and trajectory optimization time To. The proposed method is capable of generating feasible and safe trajectories in complex architectural spaces.

V. EXPERIMENTS

We conduct extensive experiments in both simulated and
real-world scenarios to validate the proposed method. We
test the proposed method in complex 3D environments and
compare our approach with state-of-the-art trajectory gener-
ation methods in 3D environments to verify its effectiveness.
Finally, we deploy our method on a tracked robot in real-
world scenarios to prove its practicality.

A. Simulation

To demonstrate the effectiveness of the proposed trajec-
tory generation, we construct four complex 3D structured
environments to verify the proposed method:

• A two-layered plane with noise(Planes): A simple in-
door scene comprising a ramp and two stairs. We add
noise to simulate the actual point cloud.

• A platform with obstacles(Platform): A two-story struc-
ture where the robot should traverse from one side of
the wall to the other via a platform.

• Multi-layered plane(Multi-layer): A multi-layered struc-
ture with complex routes, requiring the robot to choose

Fig. 5. The trajectory of going upstairs and downstairs. The trajectory
has a higher velocity when moving straight on the horizontal plane or
going downstairs compared to the lower velocity when going upstairs. The
trajectory switches to the next plane at the intersection line, ensuring velocity
continuity during the switch.

the correct path among ramps and stairs to reach a
higher level.

• Building: A common structure with stairs, requiring the
robot to use the stairs to move between floors.

The extracted traversable planes and generated trajectories
in different environments are shown in Fig.4.

As shown in Fig. 5, the application of ALM enables the
connection of trajectories between planes with minimal error,
while the continuity of the polynomial trajectory ensures
smooth higher-order kinematics. We demonstrate the trajec-
tory and velocity profile when going upstairs and down-
stairs. The proposed method effectively limits the velocity
on inclined planes within a reasonable range based on the
inclination angle of the plane.

Thanks to the characteristics of traversable planes, the
proposed method can constrain the robot’s orientation to
ensure safety on risky planes. As shown in Fig.6(a), without
the orientation constraint in Eq.(12), the robot may approach
the stairs at a large angle, risking hindrance or tipping over.
By constraining the orientation, the robot can efficiently
climb the stairs, as illustrated in Fig.6(b).

Fig. 6. Comparison of trajectories without (a) and with (b) orientation
constraints. The red line is the initial trajectory from the searched path.
Orientation constraints can effectively limit the robot’s orientation on stairs,
ensuring its safety.



Fig. 7. Comparison of three methods. The proposed method generates
smoother trajectories and aligns with the inclined plane in advance to ensure
safety. Wang’s method can traverse slopes but not stairs.

B. Benchmarks

In this section, we compare the proposed method with
Wang’s [15], Xu’s [16], and Yang’s [18]. Wang constructs
a penalty field within a 3D environment to optimize the
trajectory in R3. Xu calculates the terrain of the elevation
map and generates trajectories that satisfy nonholonomic
dynamics with ALM. Yang slices the 3D structure into
multiple layers with a tomographic method and plans on
these layers. A comparison of the characteristics of the four
methods is shown in Table I.

TABLE I. Comparison of trajectory generation characteristics.

Planning
in

3D space

Velocity limit
for

inclined planes

Planning
on

the stairs

Reasonable
orientation

angle constraint

Constrained
angular
velocity

Porposed ✓ ✓ ✓ ✓ ✓

Wang’s [15] ✓ ✗ ✗ ✗ ✓

Xu’s [16] ✗ ✓ ✓ ✗ ✓

Yang’s [18] ✓ ✗ ✓ ✗ ✗

To validate the effectiveness of our method, we conduct
tests in the environment shown in Fig.4(c). We selected
the starting position at the lowest layer and set the goal
at the highest layer. The results of several methods that
can plan in 3D environments are shown in Fig.7 and Table
II. By simplifying the planes as a plane graph, the pro-
posed method demonstrates a significant advantage in path
searching. For trajectory optimization, the proposed method
generates smoother trajectories within a similar computation
time. The proposed trajectory effectively constrains angular
velocity and the orientation of the start and end points, unlike
Yang’s method, which only plans positions, as shown in the
final of Fig.7. For fairness, we convert all data to 32-bit
floating point when calculating map size. For Yang’s method,
we omit ceiling data as it is unnecessary and gradient data
as it can be computed from other data. Yang’s method
requires storing height data and may have duplicates, while
our method represents the map as nearly non-overlapping
traversable planes with boundaries and sizes, requiring a
smaller size to store the map.

TABLE II. Comparison of trajectory generation characteristics.

Trajectory
length/m

Time of path
finding/ms

Time of trajectory
optimization/ms

Map size
/MB

Proposed 25.68 2.07 38.83 1.7
Yang’s [18] 27.39 59.72 49.78 6.0

Fig. 8. Results of the real-world experiment. (a)The original point
clouds. (b)ESDF is calculate based on traversable planes and the generated
trajectory. (c)The complex non-Manhattan stair comprises nine consecutive
stair segments with handrails connected by platforms. (d) The CubeTrack
robot was used for the experiment. ①-⑤ are snapshots of the motion process.

C. Real-World Experiment

We conduct the real-world experiment using CubeTrack
[29], a tracked robot equipped with variable geometry tracks,
as shown in Fig.8(d). The orientation of the flippers is
controlled by the motor located at the end of the flippers.
FAST-LIO2 [30] is used for localization. All codes are
executed on the NUC13.

The robot runs in a complex non-Manhattan environment,
as illustrated in Fig.8, which comprises nine consecutive stair
segments with handrails, connected by platforms to form
a spiral structure ascending to the second floor. There are
two narrow doorways on the second floor, one of which is
obstructed by the obstacle before reaching the final position.

Based on the point clouds scanned from the real en-
vironment, as shown in Fig.8(a)(c), we generated trajec-
tories within the complex 3D environment constituted by
the extracted traversable planes, as shown in Fig.8(b). The
trajectory length is 30.11m, and the required trajectory opti-
mization time is 51.24 ms. After generating the trajectory, we
can determine the robot’s position at given times and predict
its subsequent posture based on the plane it belongs to. The
role of flippers is considered to smooth the robot’s posture
changes when switching traversable planes, so the predicted
posture is used to estimate the flipper angle, as shown in
Fig.8②-④.

VI. CONCLUSION

In this paper, we present an efficient trajectory generation
method based on traversable planes for robots navigating in
complex architectural spaces. We extract traversable planes
from point clouds and build the plane graph to simplify
the problem of navigation in 3D environments. We intro-
duce cross-plane path searching and trajectory generation
and design corresponding trajectory optimization problems
and constraints to generate safe and efficient trajectories.
Experiments in both simulated and real-world scenarios
demonstrate that the proposed method can generate feasible
trajectories. Future work will focus on more architectural
spaces, such as spiral ramps and rotating staircases.



REFERENCES

[1] M. Liu, “Robotic online path planning on point cloud,” IEEE trans-
actions on cybernetics, vol. 46, no. 5, pp. 1217–1228, 2015.

[2] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart, “3d path
planning and execution for search and rescue ground robots,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 722–727.

[3] B. Chen, K. Huang, H. Pan, H. Ren, X. Chen, J. Xiao, W. Wu,
and H. Lu, “Geometry-based flipper motion planning for articulated
tracked robots traversing rough terrain in real-time,” Journal of Field
Robotics, vol. 40, no. 8, pp. 2010–2029, 2023.

[4] Z. Jian, Z. Lu, X. Zhou, B. Lan, A. Xiao, X. Wang, and B. Liang,
“Putn: A plane-fitting based uneven terrain navigation framework,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 7160–7166.

[5] D. Hoeller, N. Rudin, C. Choy, A. Anandkumar, and M. Hutter,
“Neural scene representation for locomotion on structured terrain,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 8667–8674,
2022.

[6] M. Wen, Y. Dai, T. Chen, C. Zhao, J. Zhang, and D. Wang, “A
robust sidewalk navigation method for mobile robots based on sparse
semantic point cloud,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 7841–7846.

[7] Y. Deng, M. Wang, Y. Yang, and Y. Yue, “Hd-ccsom: Hierarchical
and dense collaborative continuous semantic occupancy mapping
through label diffusion,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 2417–
2422.

[8] M. Kim, S. Lee, J. Ha, and H. Lee, “Make your autonomous mobile
robot on the sidewalk using the open-source lidar slam and autoware,”
IEEE Transactions on Intelligent Vehicles, 2024.

[9] Y. Deng, J. Wang, J. Zhao, X. Tian, G. Chen, Y. Yang, and Y. Yue,
“Opengraph: Open-vocabulary hierarchical 3d graph representation in
large-scale outdoor environments,” arXiv preprint arXiv:2403.09412,
2024.

[10] Rösmann, Christoph and Feiten, Wendelin and Wösch, Thomas and
Hoffmann, Frank and Bertram, Torsten, “Efficient trajectory optimiza-
tion using a sparse model,” in 2013 European Conference on Mobile
Robots. IEEE, 2013, pp. 138–143.

[11] M. Kurenkov, A. Potapov, A. Savinykh, E. Yudin, E. Kruzhkov,
P. Karpyshev, and D. Tsetserukou, “Nfomp: Neural field for optimal
motion planner of differential drive robots with nonholonomic con-
straints,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 991–10 998, 2022.

[12] Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu,
S. Shen, et al., “An efficient spatial-temporal trajectory planner for au-
tonomous vehicles in unstructured environments,” IEEE Transactions
on Intelligent Transportation Systems, 2023.

[13] M. Zhang, Z. Han, C. Xu, F. Gao, and Y. Cao, “Universal trajectory
optimization framework for differential-driven robot class,” 2024.
[Online]. Available: https://arxiv.org/abs/2409.07924

[14] F. Atas, G. Cielniak, and L. Grimstad, “Elevation state-space: Surfel-
based navigation in uneven environments for mobile robots,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 5715–5721.

[15] J. Wang, L. Xu, H. Fu, Z. Meng, C. Xu, Y. Cao, X. Lyu, and F. Gao,
“Towards efficient trajectory generation for ground robots beyond 2d
environment,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 7858–7864.

[16] L. Xu, K. Chai, Z. Han, H. Liu, C. Xu, Y. Cao, and F. Gao, “An
efficient trajectory planner for car-like robots on uneven terrain,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023, pp. 2853–2860.

[17] A. Leininger, M. Ali, H. Jardali, and L. Liu, “Gaussian process-based
traversability analysis for terrain mapless navigation,” arXiv preprint
arXiv:2403.19010, 2024.

[18] B. Yang, J. Cheng, B. Xue, J. Jiao, and M. Liu, “Efficient global navi-
gational planning in 3-d structures based on point cloud tomography,”
IEEE/ASME Transactions on Mechatronics, 2024.

[19] A. A. Diakité and S. Zlatanova, “Extraction of the 3d free space
from building models for indoor navigation,” ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 4, pp. 241–248, 2016.

[20] P. Shi, Q. Ye, and L. Zeng, “A novel indoor structure extraction
based on dense point cloud,” ISPRS International Journal of Geo-
Information, vol. 9, no. 11, p. 660, 2020.

[21] J. Gregorić, M. Seder, and I. Petrović, “Autonomous hierarchy creation
for computationally feasible near-optimal path planning in large en-
vironments,” Robotics and autonomous systems, vol. 172, p. 104584,
2024.

[22] T. Westfechtel, K. Ohno, B. Mertsching, R. Hamada, D. Nickchen,
S. Kojima, and S. Tadokoro, “Robust stairway-detection and localiza-
tion method for mobile robots using a graph-based model and com-
peting initializations,” The International Journal of Robotics Research,
vol. 37, no. 12, pp. 1463–1483, 2018.

[23] P. Sriganesh, N. Bagree, B. Vundurthy, and M. Travers, “Fast staircase
detection and estimation using 3d point clouds with multi-detection
merging for heterogeneous robots,” in 2023 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2023, pp. 9253–
9259.

[24] K. Lee, V. Kalyanram, C. Zhengl, S. Sane, and K. Lee, “Vision-
based ascending staircase detection with interpretable classification
model for stair climbing robots,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 6564–6570.

[25] J. Kim, S. Jung, S.-K. Kim, Y. Kim, and A.-a. Agha-mohammadi,
“Staircase localization for autonomous exploration in urban environ-
ments,” arXiv preprint arXiv:2403.17330, 2024.

[26] S. Nikoohemat, A. A. Diakité, S. Zlatanova, and G. Vosselman,
“Indoor 3d reconstruction from point clouds for optimal routing in
complex buildings to support disaster management,” Automation in
construction, vol. 113, p. 103109, 2020.

[27] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,”
ACM Transactions On Graphics (TOG), vol. 13, no. 1, pp. 43–72,
1994.

[28] R. T. Rockafellar, “Augmented lagrange multiplier functions and du-
ality in nonconvex programming,” SIAM Journal on Control, vol. 12,
no. 2, pp. 268–285, 1974.

[29] C. Xuan, J. Lu, Z. Tian, J. Li, M. Zhang, H. Xie, J. Qiu, C. Xu, and
Y. Cao, “Novel design of reconfigurable tracked robot with geometry-
changing tracks,” in 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2024, pp. 10 953–10 960.

[30] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-
inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp.
2053–2073, 2022.

https://arxiv.org/abs/2409.07924

	Introduction
	Related Work
	Traversable Plane Graph Construction
	Trajectory Generation
	Path Searching
	Trajectory representation
	Trajectory Optimization
	Constraints

	Experiments
	Simulation
	Benchmarks
	Real-World Experiment

	Conclusion
	References

