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Fig. 1: The F-shaped robot utilizes the Swept Volume Signed Distance Field for replanning and optimizing its trajectory to
avoid obstacles in an unknown environment. The figure illustrates the previously planned path and swept volume, alongside
the path and swept volume planned at the current moment. The environment contains various small obstacles, leaving very
limited feasible space for the robot’s movement. As a result, the robot must perform high-precision planning to ensure
continuous collision avoidance.

Abstract—Existing robotic trajectory planning frameworks
typically approximate the robot’s geometry and environmental
constraints. While this improves computational efficiency, it
sacrifices the solution space and frequently encounters failure in
confined environments. However, attaining a precise geometric
representation and a continuous collision-free trajectory usually
necessitates greater computational expenditure. This paper pro-
poses a methodology that utilizes the concept of swept volume
to address the identified limitations. The implementation of
an efficient Swept Volume Signed Distance Field computation
algorithm and a B-spline trajectory representation results in a
significant increase in computational efficiency while maintain-
ing strict safety guarantees. The proposed method combines
the advantages of efficiency and maximal exploitation of the
solution space. Additionally, it ensures continuous obstacle
avoidance, achieving real-time 10Hz replanning performance
on i50000 NUC11TNK for arbitrarily shaped rigid objects in
complex, unstructured environments.

I. Introduction
Real-time path planning for robots in unknown environ-

ments is a critical issue, where agility, safety, and real-time
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performance are three key metrics [1]–[3].
The majority of existing methods rely on simplifying

the robot’s geometric shape to achieve real-time obstacle
avoidance, which is not in line with the evolving trends in
robotics. Robots are increasingly being designed with more
diverse and complex geometric shapes. On the one hand,
robots themselves are being designed with more intricate
appearances to match their functionalities, such as ring-
shaped drones [4], mobile robotic arm [5] and dragon-like
robots [6]. Conversely, the geometric shape of robots is
significantly influenced by the objects they carry, such as
quadruped robots carrying loads, dexterous hands grasping
objects, or logistics forklifts carrying goods. Although sim-
plified geometric shapes can improve computational effi-
ciency, this comes at the cost of sacrificing solution space,
which can lead to planning failures in environments with
narrow feasible regions or suboptimal safe paths in non-
convex optimization scenarios.
The majority of existing collision detection methodologies

rely on discrete sampling along the trajectory. While this
technique offers computational efficiency, it often fails to
meet the necessary safety guarantees. In unstructured envi-
ronments, the presence of numerous fragmented obstacles –
such as forests or cluttered indoor areas – introduces further
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complexity. Even if an obstacle is absent at all sampled
robot poses, the trajectory may still carry a risk of collision.
Specifically, if the robot does not collide with obstacles at
the sampled discrete points, there remains a potential for
collision in the unsampled regions. This can result in an
unsafe trajectory, as the unaccounted sections may contain
hazardous obstacles not captured during the sampling process
[7]–[10].
In contrast to traditional methods that simplify geometry,

the Signed Distance Field (SDF) from computer graphics
accurately captures the geometric features of both the robot
and the environment. However, optimization-based methods
that only consider the SDF of the robot itself may struggle
with obstacle avoidance during gradient computation [11],
[12]. To address this, we introduce the Swept Volume Signed
Distance Field (SVSDF), which models the robot’s motion
envelope. This method retains complete geometric informa-
tion while enabling continuous collision detection along the
trajectory, thus reducing the risk of missed collisions due
to discrete sampling. Nevertheless, the high computational
cost of SVSDF limits its real-time applicability [13], and
the accuracy of SVSDF directly influences the safety of the
planned path.
To address these conflicting requirements, we have de-

veloped an efficient SVSDF optimization framework that
combines B-spline trajectory parameterization with a faster
SVSDF computation algorithm. This framework ensures
high-precision geometric modeling while maintaining real-
time planning capabilities, providing a novel solution for
complex robotic tasks. This approach opens up new possibil-
ities for applications in areas such as industrial automation,
medical robotics, and space exploration, where precision and
real-time performance are paramount. Experimental results
show that our method achieves real-time replanning with
improved agility and safety, significantly outperforming ex-
isting SVSDF planners in the literature [11].
We summarize our contributions as follows:
1) We propose a more accurate and efficient SVSDF

computation algorithm for the interior of the swept
volume, obtaining the step in optimization size without
predefined discretization precision of radius.

2) We propose an efficient SVSDF replanning framework,
achieving 10Hz replanning on i50000 NUC11TNK in
real-world environments.

3) We have integrated a system that balances agility,
safety, and real-time performance. We opensource
the code at https://github.com/ZJU-FAST-Lab/
Real-Time-SVSDF-Planner.git to facilitate repro-
ducibility.

II. Related Works

A. Collision Free Guranteen
Most of the existing motion planning methods require

a simplification of the robot’s shape. For example, Wu et
al. approximated the mobile manipulator as a collection of
collision balls [14]. Han et al. modeled the geometry of the

vehicle as a rectangular prism [15]. Gao et al. simplified the
underside of a symmetric quadrotor as a disc [16].
In addition, the feasible region of the robot is often

oversimplified. Wang et al. set the feasible region as the
union of multiple convex hulls [17]. Jon et al. represent the
obstacle-free space as a parametric off-centered ellipse with
Chebyshev polynomials [18].
Both simplifying the robot’s shape and reducing the

feasible region lead to a loss of solution space, making
it challenging for the robot to find a viable solution in
environments with extremely narrow feasible areas.
Additionally, many methods rely on discrete sampling

to detect collisions. For example, Wang et al. sample the
trajectory at 0.1-second intervals to check for collisions [19].
However, this approach cannot guarantee that no collisions
will occur at any point along the trajectory, i.e., it does not
provide absolute continuous safety. This is because at times
not sampled along the trajectory, the robot may still collide
with obstacles, leading to the problem of collision miss
detection [7]. As a result, most previous methods struggle
to effectively address the challenge of ensuring continuous
collision-free trajectories, especially for complex geometries.

B. Unconstrained Optimization Based Replanning
Unconstrained optimization-based real-time trajectory

planning has been widely applied. Such a pipeline can
generally be summarized in the following steps. First, the
robot’s trajectory is parameterized using various methods
such as polynomials [17], spline curves [20], and others.
This can be a direct parameterization of the pose [17]
[20] or an indirect parameterization of the arc length and
radius [21]. Next, various indicators such as smoothness,
safety, and dynamic feasibility, are converted into multiple
penalty costs, where each cost is a function of the trajectory
parameters. Finally, by minimizing these costs, a locally
optimal solution can be obtained. By providing a good initial
guess for the optimization problem, it is possible to converge
to a solution that is closer to the global optimum. The
optimization process often uses gradient-based optimizers.
This method is robust, computationally efficient and can

be applied to devices with limited computational resources.
We also employ gradient-based optimization.

C. Application of Swept Volume
In multibody robot path planning, the robot’s swept vol-

ume is calculated in specific directions to identify potential
collisions with environmental obstacles [22], where a tightly
fitted ellipsoid is used to approximate the shape, and the
Minkowski operation assesses the collision risk. However, it
still simplifies the shape of objects to facilitate the compu-
tation of the swept volume.
In addition to the explicit modeling of the swept volume,

Joho et al. implicitly model the symbolic distance field of the
swept volume using neural networks to achieve fast collision
detection [23]. They trained a network where the input
consists of the initial configuration, the target configuration,
and the query point. The network outputs the signed distance
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Fig. 2: The time data represents the average computation time for calculating the SVSDF of a point inside the swept volume. (a) Our
iterative diagram (b)Wang et al’s iterative diagram [11]. (c) The SVSDF result for an arc shape calculated by our algorithm. (d) The
SVSDF result for an arc shape under the algorithm in Algorithm 1, with the results from left to right showing no discretization of r, a
bisection discretization of r, and a five-way discretization of r. (e)(f)(g)(h)Comparison of SVSDF calculation of simply connected swept
volume.

from the query point to the swept volume. However, the
accuracy of fitting SVSDF through neural networks is rela-
tively poor, which cannot meet the strict obstacle avoidance
requirements for complex-shaped robots. Instead, this paper
uses an approach based on numerical optimization to ensure
precision.

III. Implicit Swept Volume SDF Calulation

A. Problem Formulation
The swept volume is the volume generated by a robot

along a trajectory in 3D space or the area swept in 2D. For
a rigid object M moving along a trajectory during t0 to tT ,
its swept volume SV is defined as

SV =
⋃

t∈[t0,tT ]

R(t)M + p(t), (1)

where R(t) denotes the rotation of the object M at time t,
and p(t) denotes the position at time t.
Swept Volume Signed Distance Field(SVSDF) precisely

computes the minimum signed distance from a point to

the swept volume. Referring to Wang et al. [11], we have
simplified this problem into an optimization problem. For a
two-dimensional example, let p be a point and ⊙p(r) denote
the circle centered at p with radius r. The boundary of SV
is denoted by ∂(SV), and SDFSV(p) represents the signed
distance value of the point p with respect to SV .

SDFSV(p) = argmax r · 1(p),
s.t.⊙p (r) ∩ ∂(SV) = ∅

(2)

where the indicator function 1(p) equals 1 if p /∈ SV , and
−1 otherwise. Obstacle point p ∈ SV can be used to push
the trajectory and its swept volume away from it by utilizing
the SDFSV(p) and its gradient ∇SDFSV(p) as illustrated
in Fig.3.

B. Numerical Calulation

For p /∈ SV , SDFSV(p) is calculated by solving the
minimization problem in equation (3), which means solving
for a t⋆ that minimizes the signed distance between the robot
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Fig. 3: The left image shows the gradient direction at the obstacle
point p ∈ SV affected by SDFSV(p), while the right image shows
the result of the trajectory achieving a continuous, collision-free
swept volume through gradient-based optimization.

and the point p:

CSDFSV(p) = min
t∈[t0,tT ]

SDFM (R−1(t)p− p(t)). (3)

Since the objective function is non-convex, gradient de-
scent is applied at multiple discrete sampling time stamps
to find t⋆ as inspired by work in section III.C of [12].
Implementation details are streamlined here, readers may
refer to the reference for rigorous derivations. For p ∈ SV ,
SDFSV(p) cannot be obtained through above way, because
CSDFSV(p) is conservative, not exact [13], [24]. Wang [11]
obtains SDFSV(p) for p ∈ SV by solving a semi-infinite
programming problem using the point set Y:

Y = p+ [xr, yr]
T ,

xr = r sin(θ)rres,
yr = r sin(θ)rres,

. (4)

θ represents the polar angle of the circle, while rres denotes
the discretization coefficient for the radius. By discretizing
the angle and radius separately, a point set Y for solving the
semi-infinite programming problem in Eq.(5) is constructed:

min r,

s.t.∀p ∈ ⊙p(r), CSDFSV(p) < ϵ+Precision.
(5)

For a comprehensive explanation and theoretical foundation
of this process, please refer to Section 3.2 in [11] for details.
However, this algorithm has two drawbacks: (1) The initial

value of r is provided manually, which lacks generality. (2)
For non-singularly connected swept volumes, both r and θ
require a sufficiently large discretization to ensure accuracy.
It has been observed that the value of r in their algorithm

decreases from a sufficiently big initial value until the
termination condition is satisfied. This gives rise to the first
problem mentioned above. Therefore, it can be surmised that
the above problem can be circumvented by simply increasing
r continuously from a small value to a large value. For the
second problem, a solution can be found by employing the
CSDFSV to discretize r passively. These are the two most
central ideas of our algorithm in Eq.(6):

max r,

s.t.∀p ∈ ⊙p(r), CSDFSV(p) < ϵ−Precision.
(6)

The pseudocode of our proposed algorithm is presented in
Algorithm 1. For clarity, the main differences between the

two algorithms are highlighted, with our novel contributions
marked in red and the baseline method from previous work
marked in blue. In contrast, our proposed algorithm offers
two main advantages by solving the dual problem: (1) The
initial value is provided by a conservative SDF, eliminating
the need for manual specification. (2) By strategically using
the conservative SDF value as the step size for r, only the
discretization of θ is required, achieving significantly better
accuracy at the same computational cost. We performed the
comparison experiments using the open source code1. As
shown in Fig.2, when the discretization accuracy of r is
insufficient, Wang et al.’s method exhibits significant errors
in the SDF value and its gradient. After applying a ten-part
discretization of r, their method achieved a slightly inferior
accuracy to ours but required 17.76 times the computational
time. However, this method is not always advantageous. In
the simply connected swept volume, due to the use of the
conservative SDF value as the step size for increasing r,
this algorithm is slightly less efficient for swept volumes
of narrow objects moving along their short edge but has
an advantage when moving along the long edge. However,
considering that the method in [11] requires discretization of
r, its actual computational time will be at least twice that
shown in Fig.2(h)(f).
Overall, the algorithm we propose is more accurate and

efficient.

Algorithm 1 SV SDF Computation
1: function SampleInCircle(r,p)
2: Sample a number of points inside the circle ⊙p(r) to

form a point set Y by discretizing θ uniformly referred
to equation (4). ▷ discretizing r and θ uniformly

3: return Y
4: end function
5: ———————————————–
6: Input: qurey point p
7: if CSDFSV(p) > 0 then
8: return CSDFSV(p)
9: else
10: r ← −CSDFSV(p) ▷ r ←a big initial value
11: Y← SampleInCircle(r,p)
12: ∆r ← max CSDFSV(y), y ∈ Y
13: if ∆r > ϵ−Precision then ▷ ∆r < ϵ+Precision

14: return −r
15: end if
16: r ← r −∆r.
17: goto line 11.
18: end if

IV. Replan System Design
A. Evaulation Points Selection
To initialize the optimization problem, we use the A*

algorithm to generate a reasonable sequence of poses. In this
process, both the map and the robot’s shape are discretized

1https://github.com/ZJU-FAST-Lab/Implicit-SVSDF-Planner
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into grids, and the robot’s yaw angle is also discretized with
a resolution of 20 degrees. By performing bitwise operations
between the map kernel and the robot shape kernel, we can
efficiently check whether a particular robot pose results in a
collision, as shown in Fig.4. To speed up the computation,
we use an array of 64-bit unsigned integers with 32 rows to
represent the robot’s occupancy on the grid.
For the selection of evaluation points, we apply a bitwise

operation between the dilated robot shape kernel and the map
kernel. Compared to the AABB box strategy used in [11],
[25] , this approach significantly improves computational
efficiency and reduces the number of unnecessary collision
checks, as demonstrated by the comparison in Fig.4.

Shape Kernel
Map Kernel
Evaluation Points

Shape Kernel
Map Kernel
Evaluation Points

a b

Fig. 4: Shape kernel and map kernel visualizations. (a) Shape kernel
for determining the feasibility of a pose in an A* search.(b) Dilated
shape kernel for obtaining evaluation points.

Note that the graph searched by the A* algorithm is cyclic
in order to ensure the continuity of the yaw angle in the pose
sequence. Specifically, if the yaw angle is -180 degrees, it
can retrieve not only neighbors with a yaw angle of -160
degrees but also those with a yaw angle of 160 degrees.

B. Trajectory Represention
After obtaining the initial pose sequence from the front-

end, we use a uniform B-spline curve to fit these poses as
an initial guess for the optimization problem. A B-spline
curve is generated by a small number of control points. To
ensure the continuity of the acceleration, we use cubic B-
spline. For a cubic B-spline defined by Q = {Q0, . . . , Qn}
and control points t = {t0, . . . , tn+3}, for t ∈ [ti, ti+1], let
the corresponding trajectory be pi(Q, t), and define s as the
normalization factor, s = t−ti

ti+1−ti
,M denotes the coefficient

matrix:

M =


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

 , (7)

pi(Q, s) =
1

6

[
1 s s2 s3

]
M


Qi

Qi+1

Qi+2

Qi+3

 . (8)

B-spline exhibits strong local shape preservation prop-
erties [26], [27]. When using gradients to push the swept

volume away from obstacles, modifying a subset of the
control points does not affect the shape of the curve in
regions unrelated to those control points. This behavior con-
trasts sharply with the performance of piecewise polynomial
MINCO trajectories [17] during optimization, as shown in
Fig.5. Additionally, B-splines are spatiotemporally coupled
curves with relatively few parameters, which offers signifi-
cant advantages for optimization. A quantitative comparison
between the two approaches will be presented in Section V.

C. Optimization
We define three loss functions as penalties: safety, smooth-

ness, and feasibility. The corresponding weighting coeffi-
cients are denoted by ω0 , ω1, and ω2, respectively:

Q⋆ = argmin
Q

ω0Jsafety + ω1Jsmoothness + ω2Jfeasibility. (9)

The safety metric is evaluated by applying a cubic penalty
function L3 to the SVSDF as derived earlier in this paper:

Jsafety =
∑

xob∈O
L3 [SDFSV(xob)] , (10)

L3(x) =

{
(α− x)3 , x < α

0 , x ≥ α
. (11)

If the corresponding SVSDF value falls below the safety
threshold α, a gradient is applied to the control points of the
B-spline to push the trajectory away from obstacles. Thanks
to the continuous collision representation provided by the
SVSDF and the local support property of the B-spline [28],
our improved SVSDF computation algorithm significantly
improves both optimization accuracy and efficiency, marking
the first integration of this approach into a real-time replan-
ning system.
We apply a smoothness penalty to the integral of the

square of the jerk of the trajectory, which helps make the
trajectory smooth:

Jsmoothness =

∫ TΣ

0

∥∥∥∥∂3p(Q, s)

∂s3

∥∥∥∥2 dt. (12)

To ensure the robot adheres to its dynamic constraints, we
impose limits on the maximum velocity and acceleration as
follows:

Jfeasibility =

∫ TΣ

0

L3 (Gd(ξ(t))) dt, (13)

Gd(ξ(t)) =

{
0, ξ ≤ ξmax,

ξ − ξmax, ξ > ξmax,
(14)

where ξ denotes velocity and acceleration, respectively.
Detailed derivations of the relevant gradients are provided
in the appendix in Section VII for reference.

V. Experiment
A. Benchmark Comparisson
The focus of this section is to compare the optimization

efficiency of B-spline and MINCO in the context of obstacle
avoidance via SVSDF. We conduct comparative experiments
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with the state-of-the-art methods in existing literature [11].To
avoid bias in the optimization process due to differences
in the smoothness and feasibility of the different curves,
both methods use only Jsafety as the optimization objective
function, as previously described in Section IV-C, with its
ω set to 60. It is also noteworthy that both methods use the
same L-BFGS optimizer [29], a choice that has been shown
to be widespread in the existing literature. This consistency
extends to the optimizer parameters, which are maintained
across both approaches.
The experimental results are shown in Fig.5. It can be ob-

served that when the B-spline representation of the trajectory
is used, the objective function converges to 0 much faster,
while the swept volume maintains continuous collision-free.
Conversely, when the trajectory is represented by MINCO,
the optimization process does not converge to 0 and takes
approximately 1.41 times longer. If the optimization process
is terminated upon reaching a cost of 0, the B-spline-based
approach demonstrates a 1.89-fold increase in computa-
tional efficiency compared to the MINCO-based method. As
demonstrated in Fig.5, the trajectory parameterized using B-
spline is significantly superior to the trajectory expressed
using MINCO in terms of optimization. This significant im-
provement can be attributed to the local support property of
B-splines, which provides distinct advantages for optimizing
continuous collision avoidance problems.

B. Real-World Experiments
1) Experimental Setup: We conducted experiments using

a mecanum wheel omni-directional car with a PID controller
with feedforward implemented for speed control. The car is
equipped with an i50000 NUC11TNK and an Ouster 32-line
LiDAR for mapping through FastLIO [30]. We constructed
a cluttered environment using thin foam columns and high
stools, where more than 70% of the neighbour obstacles have
a lateral distance smaller than the height of the F-shaped
robot.
To demonstrate the effectiveness of the algorithm, we

constructed some load objects with typical structures, such as
an F-shape with a deep gap and a star with multiple elongated
structures.
The resolution of the map in the experiment is 0.1 m.

Given the extremely confined nature of the feasible domain
and the ease with which collisions can occur, the safety
radius is set to 0.087 m. The maximum velocity of the car
is 0.4 m/s, and the maximum angular velocity is 0.3 rad/s.
2) Real-Time Performance: As illustrated in Fig.6(a)(b),

the F-shaped robot successfully navigates around a column
to avoid obstacles, as indicated by the ring-shaped trajectory
of its swept volume. The SVSDF algorithm 1 facilitates
rapid and precise gradient computation. In comparison, if
the algorithm in [11] is employed, it will fail in real-time
replanning. Fig.6(c)(d) illustrates the real-time replanning
trajectory of an A-shaped robot. The presence of a person
suddenly appearing on its forward path prompts the robot
to decelerate, back up, and turn around the person. The
entire experiment demonstrates that the planned trajectory

Ours Wang's

Collision

a b

Fig. 5: Impact of using B-spline and MINCO [17] on trajectory
optimization, both using smoothness, feasibility and safety cost.
The line graphs below show the change in objective function values
over time for both when using only exactly the same safety cost. (a)
Trajectory parameterized by B-spline. (b) Trajectory parameterized
by MINCO.

is smooth and collision-free, while also achieving real-time
re-planning.
Experimental results demonstrate that, compared to exist-

ing shape-aware planners, our method is the first planning
framework capable of real-time replanning for arbitrarily
shaped objects. Notably, to the best of our knowledge, this
framework represents the first-ever capability for real-time
replanning of arbitrarily shaped robots in an unknown en-
vironment, thereby highlighting its dynamic online mapping
and obstacle avoidance capabilities. This is a significant
departure from previous work [11], [12], [25], which either
assumes a known environment map, lacks the efficiency re-
quired for real-time replanning, or relies solely on simulation
without conducting physical experiments.

VI. Conclusion

This paper presents an enhanced SVSDF computation
method that significantly improves numerical accuracy
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Fig. 6: Real-world experiments. (a)(b)An F-shaped robot navigates a complex environment and avoids clustered obstacles. (c)(d)Real-time
replanning of an A-shaped robot. The experimental demonstrations are available in the supplementary video materials accompanying this
paper.

within the same time frame, coupled with B-Spline trajectory
parameterization to enhance optimization stability. Experi-
mental results demonstrate that these approaches improve
the solving efficiency of the optimization problem, enabling
the application of SVSDF for real-time replanning tasks on
arbitrarily shaped objects. To this end, we have conducted
a series of real-world experiments to demonstrate the effec-
tiveness of the proposed methods.
While proposed method effectively enhances collision

avoidance performance using SVSDF, it still faces chal-
lenges in achieving guaranteed collision avoidance due to the
non-convex nature of trajectory optimization problem. We
are actively working on improving computational efficiency
for real-time trajectory generation in 3D environments and
exploring advanced obstacle representation techniques to
better handle complex scenarios.

VII. Appendix

The derivative of the cubic penalty function L3 is easily
obtained as:

L̇3(x) =

{
−3(α− x)2 , x < α

0 , x ≥ α
. (15)

Based on the chain rule of differentiation, we can easily
obtain the gradient of the safety term with respect to the

control points as follows:

∂Jsafety
∂Qj

=
∑

xob∈O
L̇3 [SDFSV(xob)]

∂SDFSV(xob)

∂Qj
, (16)

∂SDFSV(xob)

∂Qj
=
∇SDFSV(xob)

∥∇SDFSV(xob)∥
∂pi(Q, s∗)

∂Qj
, (17)

where ∇SDFSV(xob)
∥∇SDFSV(xob)∥ represents the unit gradient direction

of the SVSDF as derived in section III-B, ∂pi(Q,s∗)
∂Qj

can be
expressed analytically from Eq.(8).
The smoothness cost of the entire trajectory is obtained

by summing the costs of the individual segments:

Jsmoothness =
∑

i∈Pieces

J i
smoothness, (18)

∂J i
smoothness
∂Qj

=2

(∫ ti+1

ti

∂3pi(Q, s)

∂s3
∂4pi(Q, s)

∂s3∂Qj
dt
)
. (19)

here j refers to the control points involved in the trajectory
segment [ti, ti+1],meaning j ∈ {i, i+1, i+2, i+3}. ∂3pi(Q,s)

∂s3

and ∂4pi(Q,s)
∂s3∂Qj

can be derived from Equ.(20) and (8).
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∂pi(Q, s)

∂s
=

1

6

[
0 1 2s 3s2

]
M


Qi

Qi+1

Qi+2

Qi+3


∂2pi(Q, s)

∂s2
=

1

6

[
0 0 2 6s

]
M


Qi

Qi+1

Qi+2

Qi+3


∂3pi(Q, s)

∂s3
=

1

6

[
0 0 0 6

]
M


Qi

Qi+1

Qi+2

Qi+3



. (20)

Finally, the gradients for kinematic feasibility utilize the
same technical framework as the safety terms. This is be-
cause, fundamentally, the velocity and acceleration profiles
correspond to the first- and second-order derivatives of the
position B-spline trajectory. Specifically, Velocity is repre-
sented as a B-spline of degree n−1, derived by differentiating
the original degree-n B-spline. Acceleration further reduces
the degree to n−2, following the same derivative rules [27].
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